

Radioactive waste management in France, safety demonstration fundamentals

G.Ouzounian, S.Voinis, F.Boissier

The nuclear fuel cycle

The French classification

Short-lived waste

Long-lived waste

Period ≤ 31 years

Period > 31 years

Very low level

Waste from dismantling operations (CSTFA in France since 2003)

Low level

Waste mainly from dayto-day operation of NPPs
(CSFMA in France since 1992) Graphite, radiumbearing waste (Studies stage in France)

Intermediate level

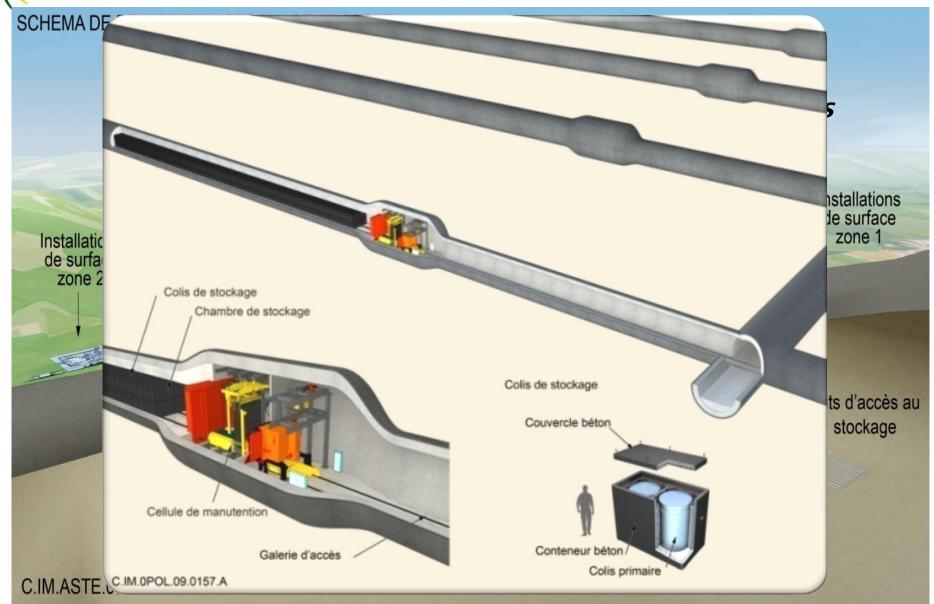
High level

Waste from SF reprocessing plants

(Geological disposal facility in France to be commissioned in 2025)

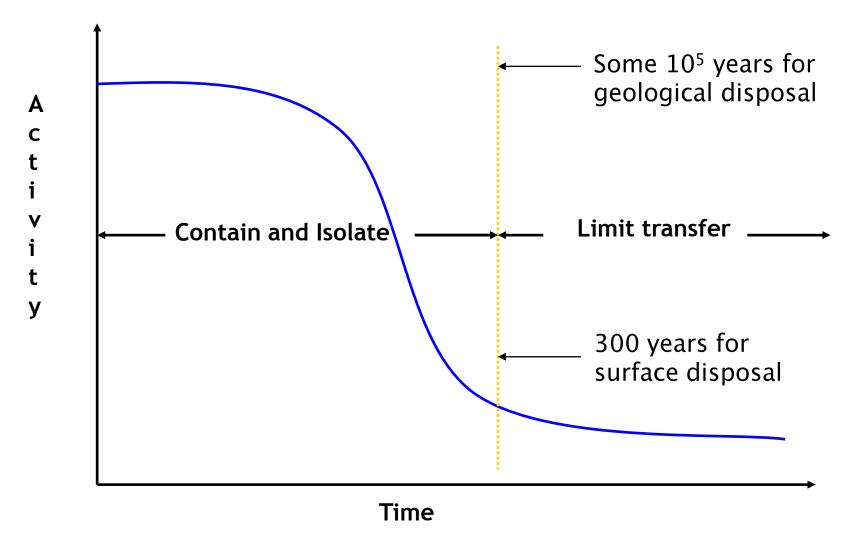
HL vitrified waste: after reprocessing & cooling,

ICRP Symposium Bethesda - Wednesday October 26, 2011


Centre de stockage de l'Aube, LIL-SL waste

The Cigéo Project

(Centre industriel de stockage géologique)



Protection of human beings and the environment

Immediate and long term protection

Strategy for management

ICRP Symposium Bethesda - Wednesday October 26, 2011

Specificities of disposal safety cases

- No feedback or reference from already existing experience for longterm radioprotection concerns
- Timescales to be considered which extend beyond human experience
- Consider the different life phases of a repository in a coordinated and consistent way (i.e. operation, and post-closure)
- Integrate in a consistent framework all the available information, including waste characteristics, technical design, site data and scientific knowledge to perform safety assessments
- Manage THMCR uncertainties especially for the post-closure phase

Long timescales

Main challenge for the development of the Post-closure safety case

- All physical processes likely to occur over time can be described, modelised and analysed
 - Waste characteristics evolution
 - » heat generation, dose generation, activity decrease..
 - · Engineered components degradation
 - » Long term behaviour
 - · Geodynamic evolution in known conditions
 - » erosion, climate change, seismic..
 - · Radionuclides release and migration...
- Many events may however occur, especially when dealing with very long periods
 - + Human intrusion
 - + Climate change and consequences on geodynamic evolution
 - \$\text{High standard of reliability in the safety case}
 - Understanding and description of the sequence of events and processes likely to occur over the lifetime of the repository

Safety: two main Objectives for All Disposal Facilities

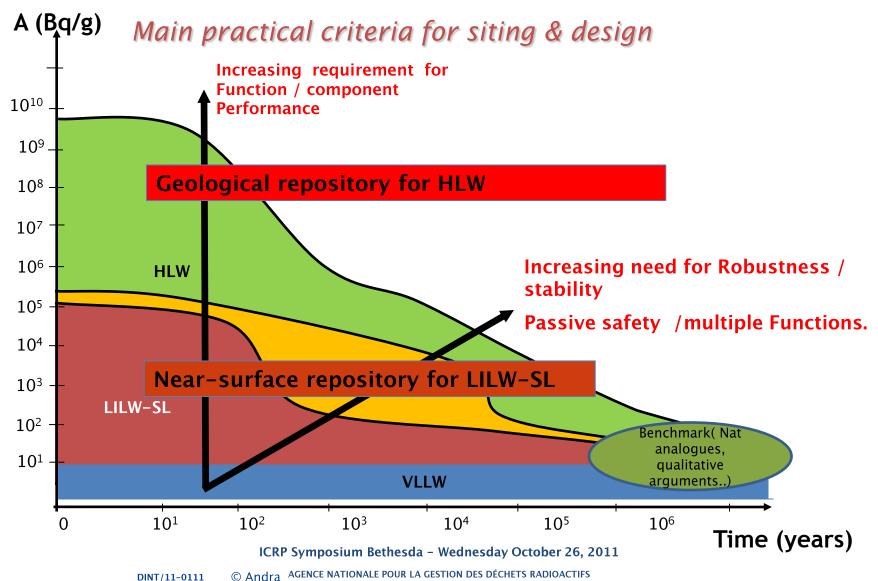
Protection of human beings and the environment

- assessment of the radiological and chemical impact of the disposal facility
- monitoring of facilities and of the environment

Immediate and long term protection

- notion of present and future with timescales consistent with the lifetime of radionuclides
- Impacts assessed over a longer or shorter timescale depending on the nature of the waste involved and, consequently, on the related disposal facility

General objective of the disposal design


The repository is designed according to the site and wastes characteristics

- suitability to accommodate with the radioactive and the toxic inventories
- designed to meet requirements defined according to the type of waste
- allowing the decay of the activity contained in the disposed waste packages in order to reach a residual level that may potentially cause acceptable exposures to humans and the environment
 - Whatever the scenario envisaged

Disposal solutions suited to residual radioactivity

Will depend on the radioactive inventory and thus on the involved timescale

Basic principles

Post-closure: « Passive Safety »

Robustness of the disposal concept

Demonstrability

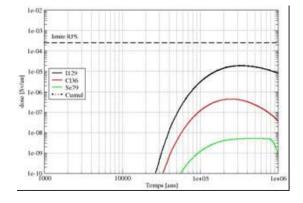
Best possible usage of multiple arguments (qualitative reasoning, safety calculations, analogies, experiments, technical demonstrators)

Radioprotection Objectives

Protection of human beings and the environment understood, above all, as a protection against the specific risk linked to radioactive waste:

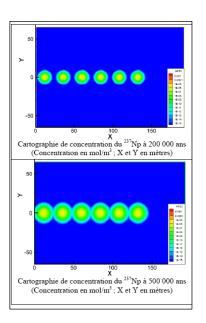
- Radioactivity and its induced effects
- Normal situation: equity between generations
 - □ 0.25 mSv/year as a fraction of dose limit for the repository's operating and closure periods
- Altered situations
 - ☐ No fixed constrained value, calculated impact according to
 - » likelihood of the events (intrusion..),
 - » chronic or timely character of the exposures,
 - » degree of pessimism of the calculation assumptions

According to regulatory safety guidance 2008, the first 10,000 years will be the subject of a special attention (since the stability of the site must be demonstrated); the 0.25-mSv/y threshold constitutes a reference.



Compliance with Protection objectives

🗠 Radiological impact assessments :

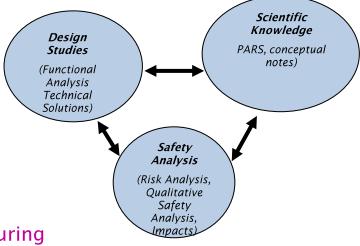


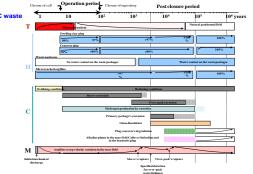
to verify compliance with dose constraints

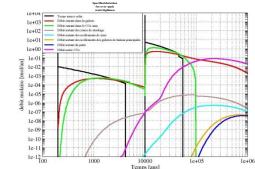
- But safety verified with complementary indicators assessments.
 - ☐ to verify performance (concentration, RN fluxes, water flows,)

A multidisciplinary process with a strong integration need

Functional analysis


☐ Identification of safety functions


Phenomenological analysis (PARS)


- ☐ Phenomenological evolution of a repository during its lifetime
- ☐ Identification of uncertainties

Safety analyses

- ☐ Handing of uncertainties
- ☐ Scenario defined for safety-calculation purposes
- ☐ Quantification of indicators (complementary indicators and dose)

ICRP Symposium Bethesda - Wednesday October 26, 2011

The importance of scenarios 1/2

(A'IDITA	Favour simple representations of processes in order to facilitate the interpretation of results
	☐ Normal-evolution scenario corresponds to the likely chronological and spatial evolutions of the repository
	□ Altered evolution scenarios take into account uncertainties on understanding as well as on external events + Container/over-pack failure + Seal failure + Intrusive borehole drilled through the repository + Heavily degraded operation (all safety functions are set at a more pessimistic level than normally expected, i.e. COX permeability, etc.

☐ Both type of scenarios include sensitivity cases

The importance of scenarios 2/2

BUT

Not to predict the impact because of uncertainties and envisaged timescales

- To evaluate the repository impact upon conservative assumptions
- To verify the performance of the three safety functions by using relevant indicators (e.g., Péclet number, molar-flow rate, transfer pathways, etc.).
- To evaluate the dose impact, at the end

The place of the biosphere

Constitutes the last step in modelling the transfer of radionuclides and chemical toxins towards "human beings" and to further determine their impact.

-)) Various links in the food chain are considered for that purpose.
-) A common topic in the different safety cases addressed by Andra whether they refer to existing surface waste disposal facilities or future projects.

No safety function given to the biosphere.

The place of the biosphere

- Andra's strategy and approach for description and modelling of the biosphere is based on
 -) the BIOMASS project
 -) international practices
 - Past Andra exercises (D2005, CSM safety report...) and reviews by the IRSN

The IAEA BIOMASS was adapted by Andra

- To be applicable to both surface and deep geological repositories
- To refine the different steps of selection and conceptualisation
- To consider the different life phases of a nuclear waste disposal facility,
- The selection of typical biosphere to be modelled
- To consider the activities of the potential exposed population groups.

Conclusions

- Experience is available for low and intermediate-level radioactive waste disposal solutions
- There are no reference on geological repositories for highlevel and intermediate level long-lived wastes
- Safety is build from the general knowledge and the common sense
 - Tools are specifically developed to integrate all the information and to assess the future behaviour and impact of the disposed of radionuclides
- Thorough and high quality physics are used to demonstrate how safety can be achieved
- Given the timescales to consider, only a full set of approaches may contribute to convince